Generate text embeddings for queries and documents.
import osfrom unstructured.embed.mixedbreadai import ( MixedbreadAIEmbeddingConfig, MixedbreadAIEmbeddingEncoder,)from unstructured.documents.elements import Textembedding_encoder = MixedbreadAIEmbeddingEncoder( config=MixedbreadAIEmbeddingConfig( api_key=os.getenv("MXBAI_API_KEY"), model_name="mixedbread-ai/mxbai-embed-large-v1", ))elements = embedding_encoder.embed_documents( elements=[Text("Bread is life"), Text("Bread is love")])query = "Represent this sentence for searching relevant passages: What is bread?"query_embedding = embedding_encoder.embed_query(query)[print(element.embedding) for element in elements]print(query_embedding)print(embedding_encoder.is_unit_vector, embedding_encoder.num_of_dimensions)